Advertisements
Advertisements
प्रश्न
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
उत्तर
`("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Considering the first equality
`("log"x)/("log"5) = ("log"36)/("log"6)`
⇒ `("log"x)/("log"5) = ("log"6^2)/("log"6) = (2"log"6)/("log6)` = 2
⇒ log x = 2log5 = log 52 = log25
∴ x = 25
Considering the second equality
`("log"36)/("log"6) = ("log"64)/("log"y)`
⇒ `("log"6^2)/("log"6) = (2"log"6)/("log"6) = 2 = ("log"8)/("log"y)`
⇒ log y = `("log"64)/(2) = ("log"8^2)/(2) = (2"log"8)/(2)` = log8
∴ y = 8.
APPEARS IN
संबंधित प्रश्न
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Evaluate: logb a × logc b × loga c.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"1331)/("log"11)` = logx
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1