Advertisements
Advertisements
प्रश्न
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
उत्तर
`("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Considering the first equality
`("log"x)/("log"5) = ("log"36)/("log"6)`
⇒ `("log"x)/("log"5) = ("log"6^2)/("log"6) = (2"log"6)/("log6)` = 2
⇒ log x = 2log5 = log 52 = log25
∴ x = 25
Considering the second equality
`("log"36)/("log"6) = ("log"64)/("log"y)`
⇒ `("log"6^2)/("log"6) = (2"log"6)/("log"6) = 2 = ("log"8)/("log"y)`
⇒ log y = `("log"64)/(2) = ("log"8^2)/(2) = (2"log"8)/(2)` = log8
∴ y = 8.
APPEARS IN
संबंधित प्रश्न
Find x, if : logx 625 = - 4
Show that : loga m ÷ logab m + 1 + log ab
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve for x: log (x + 5) = 1
Solve for x: `("log"27)/("log"243)` = x
If 2 log x + 1 = log 360, find: x
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n