Advertisements
Advertisements
प्रश्न
Find x, if : logx 625 = - 4
उत्तर
logx 625 = - 4
⇒ 625 = x- 4 ...[ Removing logarithm ]
⇒ 54 = `( 1/x )^4`
⇒ 5 = `1/x` ....[ Powers are same, bases are equal ]
⇒ x = `1/5`
APPEARS IN
संबंधित प्रश्न
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"27)/("log"243)` = x
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If 2 log x + 1 = log 360, find: log(2 x -2)
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?