Advertisements
Advertisements
प्रश्न
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
उत्तर
Log xy = log`( x/y )` + 2log2 = 2
log xy = 2
⇒ log xy = 2log10
⇒ log xy = log 102
⇒ log xy = log 100
∴ xy = 100 ...(1)
Now consider the equation
`log( x/y ) + 2log2 = 2`
⇒ `log( x/y ) + log2^2 = 2log 10`
⇒ `log( x/y ) + log 4 = log 10^2`
⇒ `log( x/y ) + log 4 = log 100`
⇒ `( x/y ) xx 4 = 100`
⇒ 4x = 100y
⇒ x = 25y
⇒ xy = 25y x y
⇒ xy = 25y2
⇒ 100 = 25y2 ...[ from(1) ]
⇒ y2 = `100/25`
⇒ y2 = 4
⇒ y = 2 ....[ ∵ y > 0 ]
From (1),
xy = 100
⇒ x x 2 = 100
⇒ x = `100/2`
⇒ x = 50.
Thus the values of x and y are x = 50 and y = 2.
APPEARS IN
संबंधित प्रश्न
Show that : loga m ÷ logab m + 1 + log ab
Evaluate: logb a × logc b × loga c.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
If 2 log x + 1 = log 360, find: x
If 2 log x + 1 = log 360, find: log(2 x -2)
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
Prove that log 10 125 = 3 (1 - log 10 2)