Advertisements
Advertisements
प्रश्न
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
उत्तर
log (1 + 2 + 3) = log 6
= log (1 + 2 + 3) = log 1 + log 2 + log 3
No, this property is not true for any numbers x, y, z
For example, log (1 + 3 + 5) = log 9
log 1 + log 3 + log 5 = log (1 x 3 x 5) = log 15
log (1 + 3 + 5) ≠ log 1 + log 3 + log 5.
APPEARS IN
संबंधित प्रश्न
Find x, if : logx 625 = - 4
Show that : loga m ÷ logab m + 1 + log ab
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Evaluate : log38 ÷ log916
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"128)/("log"32)` = x
Solve for x: `("log"289)/("log"17)` = logx
If log x = a and log y = b, write down
10a-1 in terms of x
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.