Advertisements
Advertisements
प्रश्न
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
उत्तर
L.H.S.
= (log a)2 - (log b)2
= (log a + log b)(log a - log b) ...{using identity m2 - n2 = (m + n)(m - n)}
= `"log"("ab")"log"("a"/"b")`
= `"log"("a"/"b")."log"("ab")`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"1331)/("log"11)` = logx
Express log103 + 1 in terms of log10x.
If log x = a and log y = b, write down
10a-1 in terms of x
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n