Advertisements
Advertisements
प्रश्न
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
उत्तर
L.H.S.
= (log a)2 - (log b)2
= (log a + log b)(log a - log b) ...{using identity m2 - n2 = (m + n)(m - n)}
= `"log"("ab")"log"("a"/"b")`
= `"log"("a"/"b")."log"("ab")`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"81)/("log"9)` = x
If 2 log x + 1 = log 360, find: x
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Prove that log 10 125 = 3 (1 - log 10 2)
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1