Advertisements
Advertisements
प्रश्न
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
उत्तर
log (1 + 2 + 3) = log 6
= log (1 + 2 + 3) = log 1 + log 2 + log 3
No, this property is not true for any numbers x, y, z
For example, log (1 + 3 + 5) = log 9
log 1 + log 3 + log 5 = log (1 x 3 x 5) = log 15
log (1 + 3 + 5) ≠ log 1 + log 3 + log 5.
APPEARS IN
संबंधित प्रश्न
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Find x, if : logx (5x - 6) = 2
Evaluate: logb a × logc b × loga c.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve for x: `("log"1331)/("log"11)` = logx
If a b + b log a - 1 = 0, then prove that ba.ab = 10
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1