Advertisements
Advertisements
प्रश्न
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
उत्तर
log 7 + log (3x - 2) = log (x + 3) + 1
⇒ log 7 + log (3x - 2) - log (x + 3) = 1
⇒ `"log"(7.(3x - 2))/(x + 3)` = log 10
⇒ `(7.(3x - 2))/(x + 3)` = 10
⇒ 21x - 14 = 10(x + 3)
⇒ 21x - 10x = 30 + 14
⇒ 11x = 44
⇒ x = 44 / 11 = 4.
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Evaluate: logb a × logc b × loga c.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Evaluate : log38 ÷ log916
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"1331)/("log"11)` = logx
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1