Advertisements
Advertisements
प्रश्न
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
उत्तर
Given that
a2 + b2 = 23ab
⇒ a2 + b2 + 2ab = 23ab + 2ab
⇒ a2 + b2 + 2ab = 25ab
⇒ (a + b)2 = 25ab
Taking log on both side
⇒ log(a + b)2 = log25ab
⇒ 2log(a + b) = log25 + loga + logb
⇒ 2log(a + b) - log52 = loga + logb
⇒ 2log(a + b) - 2log5 = loga + logb
⇒ 2[log(a + b) - log5] = loga + logb
⇒ `log((a+b)/5)=1/2[loga+logb]`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Find x, if : logx 625 = - 4
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"128)/("log"32)` = x
If log x = a and log y = b, write down
10a-1 in terms of x
Prove that log 10 125 = 3 (1 - log 10 2)