Advertisements
Advertisements
Question
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Solution
Given that
a2 + b2 = 23ab
⇒ a2 + b2 + 2ab = 23ab + 2ab
⇒ a2 + b2 + 2ab = 25ab
⇒ (a + b)2 = 25ab
Taking log on both side
⇒ log(a + b)2 = log25ab
⇒ 2log(a + b) = log25 + loga + logb
⇒ 2log(a + b) - log52 = loga + logb
⇒ 2log(a + b) - 2log5 = loga + logb
⇒ 2[log(a + b) - log5] = loga + logb
⇒ `log((a+b)/5)=1/2[loga+logb]`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Express log103 + 1 in terms of log10x.
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If 2 log x + 1 = log 360, find: log(2 x -2)
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.