Advertisements
Advertisements
Question
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Solution
Given that
m = log 20 and n = log 25
We also have
2log( x - 4 ) = 2m - n
⇒ 2log ( x - 4 ) = 2log 20 - log 25
⇒ log( x - 4 )2 = log202 - log 25
⇒ log( x - 4 )2 = log 400 - log 25
⇒ log( x - 4 )2 = log `400/25`
⇒ ( x - 4 )2 = `400/25`
⇒ ( x - 4 )2 = 16
⇒ x - 4 = 4
⇒ x = 4 + 4
⇒ x = 8.
APPEARS IN
RELATED QUESTIONS
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
If log√27x = 2 `(2)/(3)` , find x.
Find x, if : logx 625 = - 4
Evaluate : log38 ÷ log916
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"27)/("log"243)` = x
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.