Advertisements
Advertisements
प्रश्न
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
उत्तर
Given that
m = log 20 and n = log 25
We also have
2log( x - 4 ) = 2m - n
⇒ 2log ( x - 4 ) = 2log 20 - log 25
⇒ log( x - 4 )2 = log202 - log 25
⇒ log( x - 4 )2 = log 400 - log 25
⇒ log( x - 4 )2 = log `400/25`
⇒ ( x - 4 )2 = `400/25`
⇒ ( x - 4 )2 = 16
⇒ x - 4 = 4
⇒ x = 4 + 4
⇒ x = 8.
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If log√27x = 2 `(2)/(3)` , find x.
Evaluate: logb a × logc b × loga c.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"27)/("log"243)` = x
State, true of false:
logba =-logab