Advertisements
Advertisements
प्रश्न
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
उत्तर
log 8 (x2 - 1) - log 8 (3x + 9) = 0
⇒ `"log"_8((x^2 - 1)/(3x + 9))` = log 8 1
⇒ `(x^2 - 1)/(3x + 9)` = 1
⇒ x2 - 1 = 3x + 9
⇒ x2 - 3x - 10 = 0
⇒ x2 - 5x + 2x - 10 = 0
⇒ x (x - 5) + 2(x - 5) = 0
⇒ (x - 5)(x + 2) = 0
⇒ x = 5 or x = -2.
APPEARS IN
संबंधित प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
Find x, if : logx (5x - 6) = 2
Show that : loga m ÷ logab m + 1 + log ab
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"81)/("log"9)` = x
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
If a b + b log a - 1 = 0, then prove that ba.ab = 10