Advertisements
Advertisements
प्रश्न
Find x, if : logx (5x - 6) = 2
उत्तर
logx (5x - 6) = 2
⇒ 5x - 6 = x2 ...[ Removing logarithm ]
⇒ x2 - 5x + 6 = 0
⇒ x2 - 3x - 2x + 6 = 0
⇒ x( x - 3 ) - 2( x - 3 ) = 0
⇒ ( x - 2 )( x - 3 ) = 0
∴ x = 2, 3.
APPEARS IN
संबंधित प्रश्न
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Evaluate : log38 ÷ log916
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If 2 log x + 1 = log 360, find: log(2 x -2)
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.