Advertisements
Advertisements
प्रश्न
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
उत्तर
(i) x - y - z
= log1012 - log42 x log109 - log100.4
= log10( 4 x 3 ) - log42 x log109 - log100.4
= log104 + log103 - log42 x 2log103 - log10`( 4/10 )`
= log104 + log103 - `(log_10 2)/(2log_10 2)` x 2log103 - log104 + log1010
= log104 + log103 - `[ 2log_10 3 ]/2`- log104 + 1
= 1
(ii) 13x - y - z = 131 = 13.
APPEARS IN
संबंधित प्रश्न
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"1331)/("log"11)` = logx
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If 2 log x + 1 = log 360, find: x
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5