Advertisements
Advertisements
प्रश्न
Solve for x: `("log"1331)/("log"11)` = logx
उत्तर
`("log"1331)/("log"11)` = logx
⇒ `("log"11^3)/("log"11)` = logx
⇒ `(3"log"11)/(log"11)` = logx
⇒ 3 = logx
⇒ 3log10 = logx ...(since log10 = 1)
⇒ log 103 = logx
∴ x = 103
= 1000.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Find x, if : logx 625 = - 4
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log 4 x + log 4 (x-6) = 2
If log x = a and log y = b, write down
102b in terms of y
If 2 log x + 1 = log 360, find: log(2 x -2)
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n