Advertisements
Advertisements
प्रश्न
Solve for x: `("log"1331)/("log"11)` = logx
उत्तर
`("log"1331)/("log"11)` = logx
⇒ `("log"11^3)/("log"11)` = logx
⇒ `(3"log"11)/(log"11)` = logx
⇒ 3 = logx
⇒ 3log10 = logx ...(since log10 = 1)
⇒ log 103 = logx
∴ x = 103
= 1000.
APPEARS IN
संबंधित प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5