Advertisements
Advertisements
प्रश्न
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
उत्तर
`"log" x^2 - "log"sqrt(y)` = 1
⇒ `"log"(x^2/sqrt(y))` = log 10
⇒ `x^2/sqrt(y)` = 10
⇒ `sqrt(y) = x^2/(10)`
Squaring both sides, we get
y = `(x^2/10)^2 = x^4/(100)`
Now, when x = 2,
y = `(2^4)/(100) = (16)/(100) = (4)/(25)`.
APPEARS IN
संबंधित प्रश्न
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"128)/("log"32)` = x
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1