Advertisements
Advertisements
प्रश्न
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
उत्तर
log10x = 2a
⇒ x = 102a ...[ Removing logarithm from both sides ]
⇒ x1/2 = 10a
⇒ 10a = x1/2
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
If log x = a and log y = b, write down
102b in terms of y
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2