Advertisements
Advertisements
प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
उत्तर
Given that
a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z
Consider the equation,
3a2 - 2b3 = 6log z
⇒ 3log x - 2log y = 6log z
⇒ logx3 - logy2 = logz6
⇒ log `(x^3/y^2)` = logz6
⇒ `x^3/y^2 = z^6`
⇒ `x^3/z^6 = y^2`
⇒ `y^2 = x^3/z^6`
⇒ y = `( x^3/z^6 )^(1/2)`
⇒ y = `( x^(3/2)/z^(6/2))`
⇒ y = `x^(3/2)/z^3`
APPEARS IN
संबंधित प्रश्न
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
State, true of false:
logba =-logab
If log x = a and log y = b, write down
10a-1 in terms of x
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If 2 log x + 1 = log 360, find: x
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
If log (a + 1) = log (4a - 3) - log 3; find a.
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.