Advertisements
Advertisements
प्रश्न
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
उत्तर
log`(( a - b )/2)= 1/2( log a + log b )`
⇒ log`(( a - b )/2) = 1/2( log ab ) `
⇒ log`(( a - b )/2) = log (ab)^(1/2)`
⇒ `(( a - b )/2) = (ab)^(1/2)`
Squaring both sides we have,
`(( a - b)/2)^2 = ab`
⇒ `( a - b )^2/4 = ab`
⇒ ( a - b )2 = 4ab
⇒ a2 + b2 - 2ab = 4ab
⇒ a2 + b2 = 4ab + 2ab
⇒ a2 + b2 = 6ab.
APPEARS IN
संबंधित प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
Evaluate: logb a × logc b × loga c.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve the following:
log (x + 1) + log (x - 1) = log 48
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If 2 log x + 1 = log 360, find: x
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.