Advertisements
Advertisements
प्रश्न
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
उत्तर
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
⇒ log [(x + 1)(x - 1)] = log 11 + log 32
⇒ log {x2 - 1} = log (11.9)
⇒ log {x2 - 1} = log99
⇒ x2 - 1 = 99
⇒ x2 = 100
So, x = 10 or -10
Negative value is rejected
So, x = 10.
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"81)/("log"9)` = x
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If log x = a and log y = b, write down
102b in terms of y
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1