Advertisements
Advertisements
प्रश्न
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
विकल्प
True
False
उत्तर
True.
`("log"49)/("log"7)` = log y
⇒ `("log"7^2)/("log"7)` = log y
⇒ `(2"log"7)/("log"7)` = log y
⇒ 2(1) = log y
⇒ 2log10 10 = log y
⇒ log10 102 = log10 y
⇒ log10 100 = log10 y
⇒ y = 100.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"1331)/("log"11)` = logx
If log x = a and log y = b, write down
102b in terms of y
If 2 log x + 1 = log 360, find: x
Express the following in a form free from logarithm:
3 log x - 2 log y = 2