Advertisements
Advertisements
प्रश्न
Solve for x: `("log"27)/("log"243)` = x
योग
उत्तर
`("log"27)/("log"243)` = x
⇒ `("log"3^3)/("log"3^5)` = x
⇒ `(3"log"3)/(5"log"5)` = x
⇒ x = `(3)/(5)`.
shaalaa.com
More About Logarithm
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Evaluate : log38 ÷ log916
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"289)/("log"17)` = logx
Express log103 + 1 in terms of log10x.
If log x = a and log y = b, write down
10a-1 in terms of x