Advertisements
Advertisements
प्रश्न
Solve the following:
log (3 - x) - log (x - 3) = 1
उत्तर
log (3 - x) - log (x - 3) = 1
⇒ `"log"((3 - x)/(x - 3))`
= 1
= log 10
⇒ `((3 - x)/(x - 3))` = 10
⇒ 3 - x = 10(x - 3)
⇒ 3 - x = 10x - 30
⇒ 11x = 33
⇒ x = 3.
APPEARS IN
संबंधित प्रश्न
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"128)/("log"32)` = x
Solve for x: `("log"1331)/("log"11)` = logx
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.