Advertisements
Advertisements
प्रश्न
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
उत्तर
`3^(1-2y+3x)` in terms of m an n
log 3 m = x
⇒ m = 3x
log 3 n = y
⇒ n = 3y
∴ `3^(1-2y+3x)`
= 3.3-2y.33x
= 3.(3y)-2.(3x)3
= 3n-2.m3
= `(3"m"^3)/"n"^2`.
APPEARS IN
संबंधित प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If log√27x = 2 `(2)/(3)` , find x.
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve the following:
log 4 x + log 4 (x-6) = 2
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q