Advertisements
Advertisements
प्रश्न
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
उत्तर
L.H.S.
= `("log"_"p" x)/("log"_"pq" x)`
= `((("log" x)/("log""p")))/((("log"x)/("log""pq"))`
= `("log"x)/("log""p") xx ("log""pq")/("log"x)`
= `("log""pq")/("log""p")`
= `("log""p" + "log""q")/("log""p")`
= `1 + ("log""q")/("log""p")`
= 1 + logp q
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"1331)/("log"11)` = logx
If log x = a and log y = b, write down
102b in terms of y
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If 2 log x + 1 = log 360, find: log(2 x -2)