Advertisements
Advertisements
प्रश्न
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
उत्तर
L.H.S.
= `("log"_"p" x)/("log"_"pq" x)`
= `((("log" x)/("log""p")))/((("log"x)/("log""pq"))`
= `("log"x)/("log""p") xx ("log""pq")/("log"x)`
= `("log""pq")/("log""p")`
= `("log""p" + "log""q")/("log""p")`
= `1 + ("log""q")/("log""p")`
= 1 + logp q
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If log√27x = 2 `(2)/(3)` , find x.
Find x, if : logx 625 = - 4
Evaluate : log38 ÷ log916
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"81)/("log"9)` = x
State, true of false:
logba =-logab
If 2 log x + 1 = log 360, find: x
Express the following in a form free from logarithm:
3 log x - 2 log y = 2