English

Prove that Log P X Log Pq X = 1 + Logp Q - Mathematics

Advertisements
Advertisements

Question

Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q

Sum

Solution

L.H.S.
= `("log"_"p" x)/("log"_"pq" x)`

= `((("log" x)/("log""p")))/((("log"x)/("log""pq"))`

= `("log"x)/("log""p") xx ("log""pq")/("log"x)`

= `("log""pq")/("log""p")`

= `("log""p" + "log""q")/("log""p")`

= `1 + ("log""q")/("log""p")`
= 1 + logp q
= R.H.S.
Hence proved.

shaalaa.com
More About Logarithm
  Is there an error in this question or solution?
Chapter 10: Logarithms - Exercise 10.2

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 10 Logarithms
Exercise 10.2 | Q 40
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×