Advertisements
Advertisements
प्रश्न
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1
उत्तर
L.H.S.
= `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)`
= `(1)/(("log"30)/("log"2)) + (1)/(("log"30)/("log"3)) + (1)/(("log"30)/("log"5))`
= `("log"2)/("log"30) + ("log"3)/("log"30) + ("log"5)/("log"30)`
= `(1)/("log"30)("log"2 + "log"3 + "log"5)`
= `(1)/("log"(2 xx 3 xx 5)) ("log"2 + "log"3 + "log"5)`
= `(("log"2 + "log"3 + "log"5))/(("log"2 + "log"3 + "log"5)`
= 1
= L.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Evaluate : log38 ÷ log916
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"81)/("log"9)` = x
Solve for x: `("log"121)/("log"11)` = logx
If 2 log x + 1 = log 360, find: x
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5