Advertisements
Advertisements
प्रश्न
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2
उत्तर
L.H.S.
= `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)`
= log36 8 + log36 9 + log36 18
= `("log"8)/("log"36) + ("log"9)/("log"36) + ("log"18)/("log"36)`
= `(1)/("log"36)("log" 8 + "log"9 + "log"18)`
= `(1)/("log"36)("log"2^3 + "log"3^2 + "log"(2 xx 3^2))`
= `(1)/("log"(2^2 xx 3^2))("log"2^3 + "log"3^2 + "log"2 + "log"3^2)`
= `(1)/("log"(2^2 xx 3^2))(3"log"2 + 2"log"3 + "log"2 + "log"3)`
= `(1)/(2"log"2 + 2"log"3)(4"log"2 + 4"log"3)`
= `(4)/(2("log"2 + "log"3))("log"2 + "log"3)`
= 2
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: log (x + 5) = 1
State, true of false:
logba =-logab
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
If log (a + 1) = log (4a - 3) - log 3; find a.
Prove that log 10 125 = 3 (1 - log 10 2)
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1