Advertisements
Advertisements
प्रश्न
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.
उत्तर
`"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`
Consider,
a + b + c
= `"log""p"^2/"qr"+ "log""q"^2/"rp"+ "log""r"^2/"pq"`
= logp2 - log qr + log q2 - logrp + logr2 - logpq
= 2logp - (logq + logr) + 2logq - (logr + logp) + 2logr - (logp + logq)
= 2logp - logq - logr + 2logq - logr - logp + 2logr - logp - logq
= 0.
APPEARS IN
संबंधित प्रश्न
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: log (x + 5) = 1
Solve for x: `("log"125)/("log"5)` = logx
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q