Advertisements
Advertisements
प्रश्न
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
उत्तर
Given a2 = log x , b3 = log y
Now `a^2/2 - b^3/3` = log c
⇒ `log x/2 - log y/3 = log c`
⇒ `[ 3log x - 2log y]/6 = log c`
⇒ 3log x - 2log y = 6log c
⇒ log x3 - logy2 = 6log c
⇒ `log(x^3/y^2) = logc^6`
⇒ `x^3/y^2 = c^6`
⇒ c = `root(6)( x^3/y^2 )`
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Evaluate : log38 ÷ log916
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"81)/("log"9)` = x
Express log103 + 1 in terms of log10x.
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n