Advertisements
Advertisements
प्रश्न
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
उत्तर
Given a2 = log x , b3 = log y
Now `a^2/2 - b^3/3` = log c
⇒ `log x/2 - log y/3 = log c`
⇒ `[ 3log x - 2log y]/6 = log c`
⇒ 3log x - 2log y = 6log c
⇒ log x3 - logy2 = 6log c
⇒ `log(x^3/y^2) = logc^6`
⇒ `x^3/y^2 = c^6`
⇒ c = `root(6)( x^3/y^2 )`
APPEARS IN
संबंधित प्रश्न
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
Show that : loga m ÷ logab m + 1 + log ab
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Evaluate : log38 ÷ log916
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"81)/("log"9)` = x
State, true of false:
logba =-logab
If log x = a and log y = b, write down
10a-1 in terms of x
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
If log (a + 1) = log (4a - 3) - log 3; find a.