Advertisements
Advertisements
प्रश्न
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
उत्तर
(i) x - y - z
= log1012 - log42 x log109 - log100.4
= log10( 4 x 3 ) - log42 x log109 - log100.4
= log104 + log103 - log42 x 2log103 - log10`( 4/10 )`
= log104 + log103 - `(log_10 2)/(2log_10 2)` x 2log103 - log104 + log1010
= log104 + log103 - `[ 2log_10 3 ]/2`- log104 + 1
= 1
(ii) 13x - y - z = 131 = 13.
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: log (x + 5) = 1
Solve for x: `("log"289)/("log"17)` = logx
If log x = a and log y = b, write down
10a-1 in terms of x
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
If a b + b log a - 1 = 0, then prove that ba.ab = 10