Advertisements
Advertisements
प्रश्न
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
उत्तर
`( log _5 8 )/(( log_25 16 ) xx ( log_100 10))`
⇒ ` (( log _10 8 )/ (( log_10 5)))/(( log_10 16 ) / ( log _10 25) xx ( log_10 10 ) / ( log _10 100))`
⇒ ` (( log _10 2^3 )/ (( log_10 5)))/(( log_10 2^4 ) / ( log _10 5^2) xx ( log_10 10 ) / ( log _10 10^2))`
⇒ `( log_10 2^3 ) / ( log _10 5) xx ( log_10 5^2 ) / ( log _10 2^4) xx ( log_10 10 ^ 2 ) / ( log _10 10 )`
⇒ `( 3log_10 2 ) / ( log _10 5) xx ( 2log_10 5 ) / ( 4log _10 2) xx ( 2log_10 10 ) / ( log _10 10 )`
⇒ 3
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: log (x + 5) = 1
Solve for x: `("log"27)/("log"243)` = x
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If 2 log x + 1 = log 360, find: x
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.