Advertisements
Advertisements
प्रश्न
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
उत्तर
Given that
p = log 20 and q = log 25
We also have
2 log( x + 1 ) = 2p - q
⇒ 2log( x + 1 ) = 2 log 20 - log 25
⇒ log( x + 1 )2 = log202 - log 25
⇒ log( x + 1 )2 = log 400 - log 25
⇒ log( x + 1 )2 = log`400/25`
⇒ log( x + 1 )2 = log 16
⇒ log( x + 1 )2 = log 42
⇒ x + 1 = 4
⇒ x = 4 - 1
⇒ x = 3.
APPEARS IN
संबंधित प्रश्न
Find x, if : logx 625 = - 4
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Evaluate: logb a × logc b × loga c.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"121)/("log"11)` = logx
If log x = a and log y = b, write down
10a-1 in terms of x
If log x = a and log y = b, write down
102b in terms of y
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
Prove that log 10 125 = 3 (1 - log 10 2)