Advertisements
Advertisements
Question
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solution
Given that
p = log 20 and q = log 25
We also have
2 log( x + 1 ) = 2p - q
⇒ 2log( x + 1 ) = 2 log 20 - log 25
⇒ log( x + 1 )2 = log202 - log 25
⇒ log( x + 1 )2 = log 400 - log 25
⇒ log( x + 1 )2 = log`400/25`
⇒ log( x + 1 )2 = log 16
⇒ log( x + 1 )2 = log 42
⇒ x + 1 = 4
⇒ x = 4 - 1
⇒ x = 3.
APPEARS IN
RELATED QUESTIONS
If log√27x = 2 `(2)/(3)` , find x.
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"289)/("log"17)` = logx
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If 2 log x + 1 = log 360, find: log(2 x -2)
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.