Advertisements
Advertisements
Question
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Solution
log2(x + y) = `log 25/log 0.2`
⇒ log2(x + y) = log0.2 25
⇒ log2(x + y) = `log_(2/10) 25`
⇒ `log_2( x + y ) = log_5^-1 5^2`
⇒ `log_2( x + y ) = -2log_5 5`
⇒ `log_2( x + y ) = -2`
⇒ x + y = 2-2 ...[Removing logarithm]
⇒ x + y = `1/2^2`
⇒ x + y = `1/4` ...(1)
⇒ `log_3( x - y ) = log25/log 0.2`
⇒ `log_3( x - y ) = log5^2/log5^1`
⇒ `log_3(x - y) = (2log5)/(-1log5)`
⇒ `log_3( x - y ) = -2`
3-2 = x - y
`1/3^2=x-y`
`1/3=x-y`
x - y = `1/9` ...(2)
Adding equation (1) and (2)
x + y = `1/4`
x - y = `1/9`
2x = `1/4+1/9`
2x = `(9+4)/36`
2x = `13/36`
x = `13/72`
From equation (1)
`13/72+y=1/4`
y = `1/4-13/72`
y = `(18-13)/72`
y = `5/72`
APPEARS IN
RELATED QUESTIONS
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
State, true of false:
logba =-logab
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If 2 log x + 1 = log 360, find: log(2 x -2)
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2