Advertisements
Advertisements
प्रश्न
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
उत्तर
log2(x + y) = `log 25/log 0.2`
⇒ log2(x + y) = log0.2 25
⇒ log2(x + y) = `log_(2/10) 25`
⇒ `log_2( x + y ) = log_5^-1 5^2`
⇒ `log_2( x + y ) = -2log_5 5`
⇒ `log_2( x + y ) = -2`
⇒ x + y = 2-2 ...[Removing logarithm]
⇒ x + y = `1/2^2`
⇒ x + y = `1/4` ...(1)
⇒ `log_3( x - y ) = log25/log 0.2`
⇒ `log_3( x - y ) = log5^2/log5^1`
⇒ `log_3(x - y) = (2log5)/(-1log5)`
⇒ `log_3( x - y ) = -2`
3-2 = x - y
`1/3^2=x-y`
`1/3=x-y`
x - y = `1/9` ...(2)
Adding equation (1) and (2)
x + y = `1/4`
x - y = `1/9`
2x = `1/4+1/9`
2x = `(9+4)/36`
2x = `13/36`
x = `13/72`
From equation (1)
`13/72+y=1/4`
y = `1/4-13/72`
y = `(18-13)/72`
y = `5/72`
APPEARS IN
संबंधित प्रश्न
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
If log√27x = 2 `(2)/(3)` , find x.
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve the following:
log 4 x + log 4 (x-6) = 2
If 2 log x + 1 = log 360, find: x
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.