Advertisements
Advertisements
प्रश्न
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
उत्तर
Consider `"log"(5^("a"+"b"-"c"))`
= (a + b - c)log5
= `("log"3/5 + "log"5/4 -2"log"sqrt(3/4))"log"5`
= `("log"3/5 + "log"5/4 - "log"[sqrt(3/4)]^2)"log"5`
= `("log"3/5 + "log"5/4 - "log"3/4)"log"5`
= `"log"((3/5 xx 5/4)/(3/4))"log"5`
= log1 x log5 = 0 ...[∵ log1 = 0]
∴ `5^("a"+ "b"-"c")`
= 10°
= 1.
APPEARS IN
संबंधित प्रश्न
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Find x, if : logx 625 = - 4
Find x, if : logx (5x - 6) = 2
Show that : loga m ÷ logab m + 1 + log ab
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"289)/("log"17)` = logx
If log x = a and log y = b, write down
102b in terms of y
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?