Advertisements
Advertisements
प्रश्न
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
उत्तर
Consider `"log"(5^("a"+"b"-"c"))`
= (a + b - c)log5
= `("log"3/5 + "log"5/4 -2"log"sqrt(3/4))"log"5`
= `("log"3/5 + "log"5/4 - "log"[sqrt(3/4)]^2)"log"5`
= `("log"3/5 + "log"5/4 - "log"3/4)"log"5`
= `"log"((3/5 xx 5/4)/(3/4))"log"5`
= log1 x log5 = 0 ...[∵ log1 = 0]
∴ `5^("a"+ "b"-"c")`
= 10°
= 1.
APPEARS IN
संबंधित प्रश्न
If log√27x = 2 `(2)/(3)` , find x.
Show that : loga m ÷ logab m + 1 + log ab
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log (x + 1) + log (x - 1) = log 48
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Prove that log 10 125 = 3 (1 - log 10 2)