Advertisements
Advertisements
प्रश्न
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`
उत्तर
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`
= `("log"(125)^(1/2) - "log"(27)^(1/2) - "log"(8)^(1/2))/("log"6 - "log"5)`
= `("log"(5)^(3xx1/2) - "log"(3)^(3xx1/2) - "log"(2)^(3xx1/2))/("log"6 - "log"5)`
= `(3/2 "log"(5) - 3/2"log"(3) - 3/2"log"(2))/("log"(2 xx 3) - "log"5)`
= `(3/2["log"(5) - "log"(3) - "log"(2)])/("log"2 + "log"3 - "log"5)`
= `(3/2["log"(5) - "log"(3) - "log"(2)])/(-["log"5 - "log"3 - "log"2])`
= `-(3)/(2)`.
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
If log10 8 = 0.90; find the value of : log 0.125
If log 27 = 1.431, find the value of : log 9
If log10 a = b, find 103b - 2 in terms of a.
If log (a + 1) = log (4a - 3) - log 3; find a.
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
If 2 log x + 1 = 40, find: x
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log105
Simplify: log a2 + log a-1