Advertisements
Advertisements
प्रश्न
If log10 8 = 0.90; find the value of : log 0.125
उत्तर
Given that log108 = 0.90
⇒ log102 x 2 x 2 = 0.90
⇒ log1023 = 0.90
⇒ 3log102 = 0.90
⇒ log102 = `0.90/3`
⇒ log102 = 0.30 ...(1)
log 0.125
= log10`125/1000`
= log10`1/8`
= `log_10 (1/(2 xx 2 xx 2))`
= `log_10(1/2^3)`
= log102-3
= - 3 x ( 0.30 ) [ from(1) ]
= - 0.9
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 12
If log10 8 = 0.90; find the value of : log√32
Express the following in terms of log 2 and log 3: log 54
Express the following in terms of log 5 and/or log 2: log125
If log x = A + B and log y = A-B, express the value of `"log" x^2/(10y)` in terms of A and B.
If log 2 = x and log 3 = y, find the value of each of the following on terms of x and y: log60
If log 27 = 1.431, find the value of the following: log300
Simplify: log a2 + log a-1
Simplify: log b ÷ log b2
Find the value of:
`("log"sqrt(27) + "log"8 + "log"sqrt(1000))/("log"120)`