Advertisements
Advertisements
प्रश्न
If log 27 = 1.431, find the value of the following: log300
उत्तर
log 27
= log 33
= 3 log 3
= 1.431
⇒ log 3
= `(1.431)/(3)`
= 0.477
∴ log300
= log(3 x 100)
= log(3 x 102)
= log3 + 2 log 10
= 0.477 + 2
= 2.477.
APPEARS IN
संबंधित प्रश्न
If x = (100)a , y = (10000)b and z = (10)c , find log`(10sqrty)/( x^2z^3)` in terms of a, b and c.
If log10 8 = 0.90; find the value of : log√32
Prove that:
log10 125 = 3(1 - log102).
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
Express the following in terms of log 5 and/or log 2: log500
Write the logarithmic equation for:
F = `"G"("m"_1"m"_2)/"d"^2`
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540
If log 8 = 0.90, find the value of each of the following: `"log"sqrt(32)`
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)