Advertisements
Advertisements
प्रश्न
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
उत्तर
Given log x = 2m - n, log y = n - 2m, log z = 3m - 2n.
Given : log `(x^2y^3)/(z^4)`
We know that log(a/b) = log a - log b.
⇒ log `(x^2y^3)` - log `(z^4)`
We know that log(ab) = log a + log b
⇒ log `(x^2)` + log `(y^3)` - log `(z^4)`
⇒ 2 log x + 3 log y - 4 log z
⇒ 2(2m - n) + 3(n - 2m) - 4(3m - 2n)
⇒ 4m - 2n + 3n - 6m - 12m + 8n
⇒ -14m + 9n
APPEARS IN
संबंधित प्रश्न
Given 3log x + `1/2`log y = 2, express y in term of x.
If log10 a = b, find 103b - 2 in terms of a.
Simplify : log (a)3 - log a
Simplify : log (a)3 ÷ log a
Express the following in terms of log 2 and log 3: log 144
Express the following in terms of log 2 and log 3: log 648
Express the following in terms of log 5 and/or log 2: log160
Express the following in terms of log 2 and log 3: `"log" root(4)(648)`
Express the following in terms of log 2 and log 3: `"log"(26)/(51) - "log"(91)/(119)`
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`