Advertisements
Advertisements
प्रश्न
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
उत्तर
`log_x 25 - log_x 5 = 2 - log_x (1/125)`
⇒ `log_x 5^2 - log_x 5 = 2 - log_x (1/5)^3`
⇒ `log_x 5^2 - log_x 5 = 2 - log_x 5^-3`
⇒ `2log_x 5 - log_x 5 = 2 + 3log_x 5`
⇒ `2log_x 5 - log_x 5 - 3log_x 5 = 2`
⇒ - 2logx5 = 2
⇒ logx5 = -1
⇒ x-1 = 5
⇒ `1/x` = 5
⇒ x = `1/5`.
APPEARS IN
संबंधित प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
If log10 8 = 0.90; find the value of : log 0.125
Simplify : log (a)3 - log a
Express the following in terms of log 2 and log 3: log128
Express the following as a single logarithm:
`2"log"(15)/(18) - "log"(25)/(162) + "log"(4)/(9)`
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: `"log"2(1)/(4)`
If log 8 = 0.90, find the value of each of the following: log4