Advertisements
Advertisements
प्रश्न
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
उत्तर
Given log x = 2m - n, log y = n - 2m, log z = 3m - 2n.
Given : log `(x^2y^3)/(z^4)`
We know that log(a/b) = log a - log b.
⇒ log `(x^2y^3)` - log `(z^4)`
We know that log(ab) = log a + log b
⇒ log `(x^2)` + log `(y^3)` - log `(z^4)`
⇒ 2 log x + 3 log y - 4 log z
⇒ 2(2m - n) + 3(n - 2m) - 4(3m - 2n)
⇒ 4m - 2n + 3n - 6m - 12m + 8n
⇒ -14m + 9n
APPEARS IN
संबंधित प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
If log (a + b) = log a + log b, find a in terms of b.
Express the following in terms of log 2 and log 3: log 36
Express the following in terms of log 2 and log 3: log 216
Express the following in terms of log 2 and log 3: log128
Write the logarithmic equation for:
F = `"G"("m"_1"m"_2)/"d"^2`
If log a = p and log b = q, express `"a"^3/"b"^2` in terms of p and q.
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log18
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45
If log 8 = 0.90, find the value of each of the following: `"log"sqrt(32)`