Advertisements
Advertisements
प्रश्न
If log 27 = 1.431, find the value of the following: log300
उत्तर
log 27
= log 33
= 3 log 3
= 1.431
⇒ log 3
= `(1.431)/(3)`
= 0.477
∴ log300
= log(3 x 100)
= log(3 x 102)
= log3 + 2 log 10
= 0.477 + 2
= 2.477.
APPEARS IN
संबंधित प्रश्न
Prove that : (log a)2 - (log b)2 = log `(( a )/( b ))` . Log (ab)
Prove that : If a log b + b log a - 1 = 0, then ba. ab = 10
If log5 x = y, find 52y+ 3 in terms of x.
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
Express the following in terms of log 2 and log 3: log128
Express the following in terms of log 5 and/or log 2: log125
Write the logarithmic equation for:
V = `(1)/("D"l) sqrt("T"/(pi"r")`
If log x = A + B and log y = A-B, express the value of `"log" x^2/(10y)` in terms of A and B.
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
Simplify: log b ÷ log b2